New Riccati equations for well-posed linear systems
نویسندگان
چکیده
We consider the classic problem of minimizing a quadratic cost functional for well-posed linear systems over the class of inputs that are square integrable and that produce a square integrable output. As is well-known, the minimum cost can be expressed in terms of a bounded nonnegative selfadjoint operator X that in the finite-dimensional case satisfies a Riccati equation. Unfortunately, the infinite-dimensional generalization of this Riccati equation is not always well-defined. We show that X always satisfies alternative Riccati equations, which are more suitable for algebraic and numerical computations.
منابع مشابه
Riccati equations and optimal control of well-posed linear systems
We generalize the classical theory on algebraic Riccati equations and optimization to infinite-dimensional well-posed linear systems, thus completing the work of George Weiss, Olof Staffans and others. We show that the optimal control is given by the stabilizing solution of an integral Riccati equation. If the input operator is not maximally unbounded, then this integral Riccati equation is equ...
متن کاملRiccati Equations for Stable Well-Posed Linear Systems: The Generic Case
Under the generic assumption that zero is in the resolvent set of the generator, we show that the optimal control problem for a stable well-posed linear system is equivalent to a control problem for its reciprocal system which has bounded generating operators. Consequently, the operator X that defines the optimal cost satisfies a Riccati equation with bounded operators. Previous results needed ...
متن کاملLeft invertibility and invertible solutions of the Lyapunov equation
If the solution of a Lyapunov or Riccati equation corresponding to a finite-dimensional system is invertible, then this leads to additional properties of this system. For infinite-dimensional systems these results do not need to hold. We show that it is necessary to put some additional conditions on the spectrum of the system operator A. For instance, if this operator has compact resolvent, the...
متن کاملJ-energy Preserving Well-posed Linear Systems
The following is a short survey of the notion of a well-posed linear system. We start by describing the most basic concepts, proceed to discuss dissipative and conservative systems, and finally introduce J-energy-preserving systems, i.e., systems that preserve energy with respect to some generalized inner products (possibly semi-definite or indefinite) in the input, state and output spaces. The...
متن کاملAbout One Sweep Algorithm for Solving Linear-Quadratic Optimization Problem with Unseparated Two-Point Boundary Conditions
In the paper a linear-quadratic optimization problem (LCTOR) with unseparated two-point boundary conditions is considered. To solve this problem is proposed a new sweep algorithm which increases doubles the dimension of the original system. In contrast to the well-known methods, here it refuses to solve linear matrix and nonlinear Riccati equations, since the solution of such multi-point optimi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Systems & Control Letters
دوره 52 شماره
صفحات -
تاریخ انتشار 2004